I. SCHEMA STRUCTUREL PARTIEL :

- 1. Faire une recherche : Qu'est-ce qu'un port d'entrée/sortie pour un microcontrôleur ?
- 2. En sachant que le port A s'écrie RA, que le port B s'écrie RB et que le bit 0 du port A s'écrie RA0..., sur quel port du microcontrôleur les DEL (LED en anglais) sont-elles connectées ?
- 3. Du point de vue du microcontrôleur, les DEL sont-elles des entrées ou des sorties ?
- 4. Sur quel port et sur quels bits du microcontrôleur les BP (Boutons poussoirs) ou SW (Switches en anglais) sont-ils connectés ?
- 5. Du point de vue du microcontrôleur, les BP sont-ils des entrées ou des sorties ?
- Lorsqu'un BP est relâché, à quel potentiel la broche du microcontrôleur est-elle reliée (0V ou VCC) ?
- 7. Lorsqu'un BP est appuyé, à quel potentiel la broche du microcontrôleur est-elle reliée (0V ou VCC) ?
- 8. Compléter le tableau ci-dessous :

Un 0 sur BP signifie relâché ; un 1 sur BP signifie appuyé

BP5 (SW5)	BP4 (SW4)	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	Contenu du Port B en hexadécimal
0	0	0	0			0	0	0	0	
0	1	0	0			0	0	0	0	
1	0	0	0			0	0	0	0	
1	1	0	0			0	0	0	0	

П. **PROGRAMMATION :**

Expérimentation 1a : Allumer une DEL puis une autre

Trouver toutes les valeurs hexadécimales permettant d'allumer successivement une seule DEL en partant de la LED 0 jusqu'à la LED 7 au

- Après avoir simulé votre programme, connecter le buggy avec le cordon USB ainsi que l'adaptateur secteur (réglé sur 6V).
- Transférer le programme en cliquant sur 🛄 (compiler vers la puce).
- Vérifier le fonctionnement et appeler le professeur.
- Comment se nomment les LED 0 à 7 sur le schéma structurel partiel ?
- Vous testerez tous les prochains programmes de la même manière.

Modifier le programme pour allumer successivement une seule DEL en partant de la LED 0 jusqu'à la LED 7 au rythme de 250ms puis de la LED 7

Pour simplifier le programme principal, vous pouvez utiliser la fonction « macro » (équivalente à un « sous-programme ») pour avoir une macro

Macro Insérer l'appel d'une macro

- Cliquer sur Créer Nouvelle Macro
- Saisir sens1 puis valider OK
- Sélectionner la macro sens1 puis cliquer sur OK et Editer Macro
- Insérer la partie du programme qui représente la partie sens1

Expérimentation 2a : Décodage simple

	Pour ne prendre en compte que les Boutons Poussoirs, il faut faire l'acquisition du contenu du port B avec la fonction « masque » sur les bits considérés soit les bits 4 et 5.		
DÉBUT Boucle Tant que 1 Entrée PORT B -> BP Décision Si BP=0 Oui ? Non Sortie -> PORT D OxFF -> PORT D Boucle FIN	Propriétés : Entrée Nom Affiché : Entrée Variable : BP Pot : PORT B Pot : PORT B Entrée depuis : © Bit Unique : ? Description ? OK Annuler Lancer la simulation complète et observer ce qui se passe lors d'appui sur les BP. Expérimentation 2b : Modifier le programme pour allumer les 4 DEL gauches lors d'un appui sur le BP de gauche et pour allumer les 4 DEL droites lors d'un appui sur le BP de droite. Vous pouvez lire un bit unique si vous le souhaitez au lieu du port complet. Expérimentation 2c : Compléter le programme précédent pour allumer toutes les DEL lors d'un appui simultané sur les 2 BP.		

Expérimentation 2d : Décodage multiple :

Les DEL sont allumées pour les 2 codes suivants :

Dans le cas contraire les DEL sont éteintes.

La condition sera testée avec une fonction "ou" (OR en anglais) dont la syntaxe suivante :

BP5	BP4
Fermé	Ouvert
Fermé	Fermé

est la

(BP = 0x...) OR (BP = 0x...)

	Saisir ce programme et observer ce qui se passe sur le robot après				
	un appui sur le BP5.				
	Propriétés : Entrée				
Boucle	Nom Affiché : Entrée				
Tant que	Variable PP5				
Boucle	Port : PORT B				
Entrée	Bit Unique : 5				
B5->	O Port Comple				
	E Massus -				
	7 6 5 4 3 2 1 0				
Boucle					
BP5=0					
Boucle	? OK Annuler				
	Quel est le problème ?				
Entrée	Vous pouvez aussi utiliser le mode pas-à-pas de la simulation (F8)				
B5->	pour vous aider.				
	Expérimentation 3b :				
	Modifier la recomme nour étaindre les DEL lars d'un annui sur				
Boucle	Noumer le programme pour étérnure les DEL lois à un appur sur				
BP5=1	le BP4.				
Sortie	Expérimentation 3c :				
0xF0	Inversion de l'état des DFL par appui sur un seul BP :				
Z -> FORT D	Initialement les 8 DEL sont éteintes. Un appui sur un bouton poussoir				
	inverse l'état des DEL				
Boucle	On introduira une variable N de type « octet » qui contiendra la valeur à				
	écrire sur le port qui commande les DEI				
FIN	Pour inverser le contenu binaire de la variable N on utilisera un				
	operateur d'inversion : N=NUT N dans un bloc de calcul				

Expérimentation 3a : Allumage des DEL si appui sur RP

Expérimentation 4 : Recopie

Recopier en permanence l'état des interrupteurs BP4 et BP5 sur les LED 4 et 5. Exemple : si BP4 fermé alors LED4 allumée.

Icône		Configuration à utiliser				
Entrée	ц,	La valeur lue sera placée dans une variable Etat_BP de type « Octet ».				
Sortie	<mark>6</mark> -	Le contenu de la variable Etat_BP sera écrit sur le port.				
Boucle		On utilisera une boucle infinie (répétition infinie des séquences à l'intérieur de la boucle).				
		On écrira « tant que 1 » : condition logique toujours vraie.				

RESSOURCES :

Conversion hexadécimal / binaire / décimal :

Hex	Bin	Dec
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
А	1010	10
В	1011	11
С	1100	12
D	1101	13
Е	1110	14
F	1111	15

Exemple pour l'allumage de DEL (de 0 à 7) :

binaire hexadécimal décimal