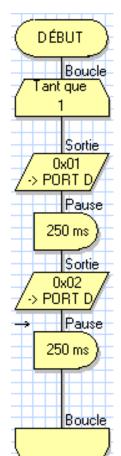

# I. SCHEMA STRUCTUREL PARTIEL:



- 1. Faire une recherche : Qu'est-ce qu'un port d'entrée/sortie pour un microcontrôleur ?
- 2. En sachant que le port A s'écrie RA, que le port B s'écrie RB et que le bit 0 du port A s'écrie RA0..., sur quel port du microcontrôleur les DEL (LED en anglais) sont-elles connectées ?
- 3. Du point de vue du microcontrôleur, les DEL sont-elles des entrées ou des sorties ?
- 4. Sur quel port et sur quels bits du microcontrôleur les BP (Boutons poussoirs) ou SW (Switches en anglais) sont-ils connectés ?
- 5. Du point de vue du microcontrôleur, les BP sont-ils des entrées ou des sorties ?
- Lorsqu'un BP est relâché, à quel potentiel la broche du microcontrôleur est-elle reliée (0V ou VCC) ?
- Lorsqu'un BP est appuyé, à quel potentiel la broche du microcontrôleur est-elle reliée (0V ou VCC) ?
- 8. Compléter le tableau ci-dessous :


Un 0 sur BP signifie relâché ; un 1 sur BP signifie appuyé

| BP5<br>(SW5) | BP4<br>(SW4) | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | Contenu du Port B<br>en hexadécimal |
|--------------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-------------------------------------|
| 0            | 0            | 0   | 0   |     |     | 0   | 0   | 0   | 0   |                                     |
| 0            | 1            | 0   | 0   |     |     | 0   | 0   | 0   | 0   |                                     |
| 1            | 0            | 0   | 0   |     |     | 0   | 0   | 0   | 0   |                                     |
| 1            | 1            | 0   | 0   |     |     | 0   | 0   | 0   | 0   |                                     |

SSI 1/8

#### II. PROGRAMMATION:

#### Expérimentation 1a : Allumer une DEL puis une autre



FIN

- ♦ Choisir Fichier Nouveau
- ◆ Puis **FORMULA FLOWCODE** comme puce à programmer.
- ◆ Cliquer sur **Misc** puis **FormulaFlowcode** pour ajouter le tableau de bord du buggy.
- ◆ Sélectionner le tableau de bord puis par un clic droit, accéder aux **Propriétés Etendues**
- Décocher « attendre appui sur BP pour exécuter le programme »
- ♦ Saisir le programme ci-contre
- Puis lancer la simulation complète et observer ce qui se passe.

#### Expérimentation 1b:

# Chenillard avec plusieurs DEL

Trouver toutes les valeurs hexadécimales permettant d'allumer successivement une seule DEL en partant de la LED 0 jusqu'à la LED 7 au rythme de 250ms.

- ◆ Après avoir simulé votre programme, connecter le buggy avec le cordon USB ainsi que l'adaptateur secteur (réglé sur 6V).
- ◆ Transférer le programme en cliquant sur ☐ (compiler vers la puce).
- Vérifier le fonctionnement et appeler le professeur.
- ♦ Comment se nomment les LED 0 à 7 sur le schéma structurel partiel ?
- ♦ Vous testerez tous les prochains programmes de la même manière.

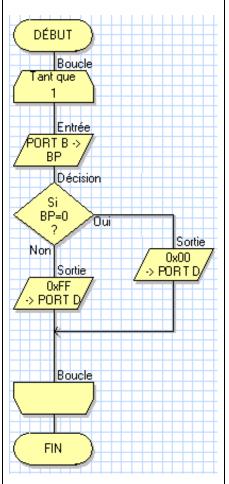
# Expérimentation 1c :

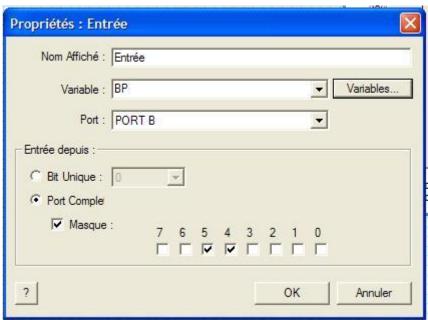
# Chenillard avec plusieurs DEL

Modifier le programme pour allumer successivement une seule DEL en partant de la LED 0 jusqu'à la LED 7 au rythme de 250ms puis de la LED 7 jusqu'à la LED 0.

Pour simplifier le programme principal, vous pouvez utiliser la fonction « macro » (équivalente à un « sous-programme ») pour avoir une macro « sens1 » et une autre « sens2 »




- **♦** Cliquer sur **Créer Nouvelle Macro**
- ◆ Saisir sens1 puis valider **O**K
- ♦ Sélectionner la macro sens1 puis cliquer sur **OK et Editer Macro**
- ♦ Insérer la partie du programme qui représente la partie sens1


SSI 2/8

# Activité 3 : Découverte du robot

#### Expérimentation 2a : Décodage simple

Pour ne prendre en compte que les Boutons Poussoirs, il faut faire l'acquisition du contenu du port B avec la fonction « masque » sur les bits considérés soit les bits 4 et 5.





Lancer la simulation complète et observer ce qui se passe lors d'appui sur les BP.

# Expérimentation 2b:

Modifier le programme pour allumer les 4 DEL gauches lors d'un appui sur le BP de gauche et pour allumer les 4 DEL droites lors d'un appui sur le BP de droite.

Vous pouvez lire un bit unique si vous le souhaitez au lieu du port complet.

# Expérimentation 2c :

Compléter le programme précédent pour allumer toutes les DEL lors d'un appui simultané sur les 2 BP.

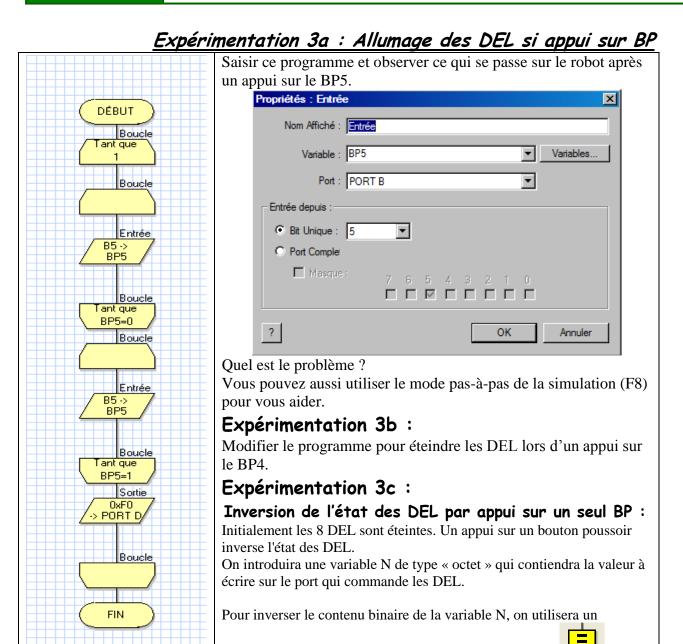
# Expérimentation 2d : Décodage multiple :

Les DEL sont allumées pour les 2 codes suivants :

Dans le cas contraire les DEL sont éteintes.

| BP5   | BP4    |  |  |
|-------|--------|--|--|
| Fermé | Ouvert |  |  |
| Fermé | Fermé  |  |  |

3/8


La condition sera testée avec une fonction "ou" (OR en anglais) dont la syntaxe suivante :

est la

$$(BP = 0x...) OR (BP = 0x...)$$

SSI

# Activité 3 : Découverte du robot



# Expérimentation 4 : Recopie

opérateur d'inversion : N=NOT N dans un bloc de calcul

Recopier **en permanence** l'état des interrupteurs BP4 et BP5 sur les LED 4 et 5. Exemple : si BP4 fermé alors LED4 allumée.

| Icône  |   | Configuration à utiliser                                                                       |  |  |  |  |
|--------|---|------------------------------------------------------------------------------------------------|--|--|--|--|
| Entrée | 1 | La valeur lue sera placée dans une variable Etat_BP de type « Octet ».                         |  |  |  |  |
| Sortie | ф | Le contenu de la variable Etat_BP sera écrit sur le port.                                      |  |  |  |  |
| Boucle |   | On utilisera une boucle infinie (répétition infinie des séquences à l'intérieur de la boucle). |  |  |  |  |
| Boucie |   | On écrira « tant que 1 » : condition logique toujours vraie.                                   |  |  |  |  |

SSI 4/8

# **RESSOURCES:**

#### Conversion hexadécimal / binaire / décimal :

| Hex | Bin  | Dec |  |
|-----|------|-----|--|
|     |      |     |  |
| 0   | 0000 | 0   |  |
| 1   | 0001 | 1   |  |
| 2   | 0010 | 2   |  |
| 3   | 0011 | 3   |  |
| 4   | 0100 | 4   |  |
| 5   | 0101 | 5   |  |
| 6   | 0110 | 6   |  |
| 7   | 0111 | 7   |  |
| 8   | 1000 | 8   |  |
| 9   | 1001 | 9   |  |
| Α   | 1010 | 10  |  |
| В   | 1011 | 11  |  |
| С   | 1100 | 12  |  |
| D   | 1101 | 13  |  |
| Ε   | 1110 | 14  |  |
| F   | 1111 | 15  |  |
|     |      |     |  |

#### Exemple pour l'allumage de DEL (de 0 à 7) :

$$2^{0} = 1$$
 $2^{1} = 2$ 
 $2^{2} = 4$ 
 $2^{3} = 8$ 
 $2^{4} = 16$ 
 $2^{5} = 32$ 
 $2^{6} = 64$ 

binaire hexadécimal décimal

SSI 5/8